1.

`A(x_1,y_1), B(x_2,y_2),C(x_3,y_3)` are three vertices of a triangle ABC, `lx+my+n=0` is an equation of line L. If L intersects the sides BC,CA and AB of a triangle ABC at P,Q,R respectively, then `(BP)/(PC)xx(CQ)/(QA)xx(AR)/(RB)` is equal toA. `-1`B. `-(1)/(2)`C. `(1)/(2)`D. 1

Answer» Correct Answer - A
Let `BP: PC = alpha: 1`
`:. P ((alpha x_(3)+x_(2))/(alpha+1),(alphay_(3)+y_(2))/(alpha+1))`
P lies on `lx +my +n = 0`
`:. L ((alpha x_(3)+x_(2))/(alpha+1)) +m ((alphay_(3)+y_(2))/(alpha+1)) +n = 0`
`:. alpha =(-(lx_(2)+my_(2)+n))/((lx_(3)+my_(3)+n))`
Similarly, if `CQ: QA = beta:1`
`:. beta = (-(lx_(3)+my_(3)+n))/((lx_(1)+my_(1)+n))`
and if `AR: RB = gamma:1`
`:. gamma =(-(lx_(1)+my_(1)+n))/((lx_(2)+my_(2)+n))`
`:. (BP)/(PC).(CQ)/(QA).(AR)/(RB) =-1`


Discussion

No Comment Found