| 1. |
AB and CD are two straight lines which intersect at point O. ∠AOD and ∠COB are vertically opposite to each other. If ∠AOC is 80°, find the value of ∠AOD and ∠DOB |
|
Answer» Let ∠AOD=4x and ∠DOB=5x Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent ANGLE on STRAIGHT LINE are supplementary) Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9 Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 ∘ Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 ∘ Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 ∘ Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 ∘ =20 Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 ∘ =20 ∘ Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 ∘ =20 ∘ Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 ∘ =20 ∘ ∠AOD=4x Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 ∘ =20 ∘ ∠AOD=4x⇒∠AOD=4×20 Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 ∘ =20 ∘ ∠AOD=4x⇒∠AOD=4×20 ∘ Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 ∘ =20 ∘ ∠AOD=4x⇒∠AOD=4×20 ∘ =80 Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 ∘ =20 ∘ ∠AOD=4x⇒∠AOD=4×20 ∘ =80 ∘ Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 ∘ =20 ∘ ∠AOD=4x⇒∠AOD=4×20 ∘ =80 ∘ Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 ∘ =20 ∘ ∠AOD=4x⇒∠AOD=4×20 ∘ =80 ∘ Now ∠COB=∠AOD (VERTICALLY opposite angles) Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 ∘ =20 ∘ ∠AOD=4x⇒∠AOD=4×20 ∘ =80 ∘ Now ∠COB=∠AOD (vertically opposite angles)⇒∠COB=80 Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 ∘ =20 ∘ ∠AOD=4x⇒∠AOD=4×20 ∘ =80 ∘ Now ∠COB=∠AOD (vertically opposite angles)⇒∠COB=80 ∘ hope it HELPS you ✌️✅✅✅ |
|