1.

According to the sampling theorem for low pass signals with T1=1/B, then what is the expression for us(t) = ?(a) \(\sum_{m=-∞}^∞ u_c (mT_1) \frac{sin⁡(\frac{π}{T_1}) (t-mT_1)}{(\frac{π}{T_1})(t-mT_1)}\)(b) \(\sum_{m=-∞}^∞ u_s (mT_1-\frac{T_1}{2}) \frac{sin⁡(\frac{π}{T_1}) (t-mT_1+\frac{T_1}{2})}{(π/T_1)(t-mT_1+\frac{T_1}{2})}\)(c) \(\sum_{m=-∞}^∞ u_s (mT_1-\frac{T_1}{2}) \frac{sin⁡(\frac{π}{T_1}) (t-mT_1-\frac{T_1}{2})}{(\frac{π}{T_1})(t-mT_1-\frac{T_1}{2})}\)(d) \(\sum_{m=-∞}^∞ u_c (mT_1) \frac{sin⁡(\frac{π}{T_1}) (t+mT_1)}{(\frac{π}{T_1})(t+mT_1)}\)I had been asked this question in semester exam.I would like to ask this question from Sampling of Band Pass Signals in chapter Sampling and Reconstruction of Signals of Digital Signal Processing

Answer»

Right ANSWER is (b) \(\sum_{m=-∞}^∞ u_s (mT_1-\FRAC{T_1}{2}) \frac{sin⁡(\frac{π}{T_1}) (t-mT_1+\frac{T_1}{2})}{(π/T_1)(t-mT_1+\frac{T_1}{2})}\)

The best I can explain: To RECONSTRUCT the equivalent low pass signals. Thus, ACCORDING to the sampling theorem for low pass signals with T1=1/B .

\(u_s (t)=\sum_{m=-∞}^∞ u_s (mT_1-T_1/2) \frac{sin⁡(π/T_1) (t-mT_1+T_1/2)}{(π/T_1)(t-mT_1+T_1/2)}\)



Discussion

No Comment Found

Related InterviewSolutions