

InterviewSolution
Saved Bookmarks
1. |
Alcohol level in blood is determined by the reaction with `K_2Cr_2O_7` solution in acidic medium. Calculate the blood level in mass percent if 10 " mL of " 0.05 M solution of `K_2Cr_2O_7` is required for the reaction of a 10.0 g sample of blood. |
Answer» Mole method: Balance the redox reaction of `C_2H_5OH` with `Cr_2O_7^(2-)` in acidic medium (Mw of `C_2H_5OH=46g)` `cancel6e^(-)+Cr_2O_7^(2-)to2Cr^(3+)]xx2` `underline(C_2H_5OHto2CO_2+cancel(12e^(-))` `underline(C_2H_5OH+2Cr_2O_7^(2-)to4Cr^(3+)+2CO_2)` For 2 " mol of "`Cr_2O_7^(2-)-=1 " mol of "C_2H_5OH` is required `10xx0.05xx10^(-3) " mol of "Cr_2O_7^(2-)` `-=(10xx0.05xx10^(-3))/(2) " mol of "C_2H_5OH` `-=25xx10^(-5)` " mol of "`C_2H_5OH` `-=25xx10^(-5)xx46g of C_2H_5OH` Percent of alcohol `-=(25xx10^(-5)xx46)/(10)xx100=0.115%` Equivalent method: `Cr_2O_7^(2-)-=C_2H_5OH` `1mEq-=1mEq` `10xx0.05xx6m" Eq of "Cr_2O_7^(2-)=3 mEq-=3 m" Eq of "C_2H_5OH` `3 mEq-=3 mEq` `3m" Eq of "C_2H_5OH-=3xx10^(-3)eq-=3xx10^(-3)xx(46)/(12)g` Percent of alcohol `-=(3xx10^(-3)xx46xx100)/(12xx10)-=0.115%` |
|