1.

An=25,d=2Sn = 120 so find the nand a .​

Answer»

GIVEN :

\\  \:  \: { \huge{.}} \:  \: { \bold{ a_{n} = 25}} \\

\\  \:  \: { \huge{.}} \:  \: { \bold{ d=2}} \\

\\  \:  \: { \huge{.}} \:  \: { \bold{ S_{n} = 120}} \\

TO FIND :

\\  \:  \: { \huge{.}} \:  \: { \bold{a=?}} \\

\\  \:  \: { \huge{.}} \:  \: { \bold{n=?}} \\

SOLUTION :

We KNOW that –

\\  \dashrightarrow { \bold{ a_{n} = a + (n -1)d}} \\

PUT the values –

\\  \implies { \bold{25= a + (n -1)2}} \\

\\  \implies { \bold{25= a +2n -2}} \\

\\  \implies { \bold{a = 27 - 2n \:  \:  \:  \:  -  -  -  - eq.(1)}} \\

▪︎ And –

\\  \dashrightarrow { \bold{ S_{n} = \dfrac{n}{2} \{a + a_n \}}} \\

• So –

\\  \implies { \bold{ 120 = \dfrac{n}{2} \{a +25\}}} \\

\\  \implies { \bold{240 =n \{a +25\}}} \\

USING eq.(1) –

\\  \implies { \bold{240 =n \{27 - 2n +25\}}} \\

\\  \implies { \bold{240 =n (52 - 2n )}} \\

\\  \implies { \bold{240 =52n - 2 {n}^{2}}} \\

\\  \implies { \bold{2 {n}^{2}  - 52n + 240 =0}} \\

\\  \implies { \bold{{n}^{2}  - 26n + 120 =0}} \\

\\  \implies { \bold{{n}^{2}  - 20n  - 6n+ 120 =0}} \\

\\  \implies { \bold{n(n -20) - 6(n - 20) =0}} \\

\\  \implies { \bold{(n - 6)(n -20)=0}} \\

\\  \implies \large{ \boxed{ \bold{n = 6 \: ,\: 20}}} \\

• Using eq.(1) –

\\  \implies \large{ \boxed{ \bold{a = 15 \: ,\:  - 13}}} \\



Discussion

No Comment Found

Related InterviewSolutions