Saved Bookmarks
| 1. |
An ideal gas undergoes a circular cycle as shown in the figure. Find the ratio of maximum temperature of cycle to minimum temperature of cycle. |
|
Answer» `((1+sqrt(2))/(sqrt(2)-1))^(2)` At point `A` `(P_(A))/(P_(B))=(V_(A))/(V_(B))=2+cos45^(@)=(2sqrt(2)+1)/(sqrt(2))=(4+sqrt(2))/(2)` `nRT_(A)=P_(A)V_(A)=((4+sqrt(2))/(2))^(2)P_(0)V_(0)` Similarly at point `B` `(P_(B))/(P_(0))=(V_(B))/(V_(0))=2-cos45^(@)=(4-sqrt(2))/(2)` `nRT_(B)=P_(B)V_(B)=((4-sqrt(2))/(2))^(2)P_(0)V_(0)` `rArr (T_(A))/(T_(B))=((4+sqrt(2))/(4-sqrt(2)))^(2)`
|
|