1.

Area of the Rhombus whose perimeter is equal to 40 if one diagonal is equal to 16​

Answer»

Answer:

ar (rhombus) = 96 square units.

Step-by-step explanation:

____________________________________

\setlength{\unitlength}{1cm}\begin{picture}(6,6)\thicklines\put(0,0){\line(-1,-2){1.5}}\put(0,0){\line(1,0){4}}\put(4,0){\line(-1,-2){1.5}}\put(-1.5,-3){\line(1,0){4}}\put(-1,0){A}\put(4.3,0){B}\put(3,-3){C}\put(-2,-3){D}\qbezier(0,0)(1.7,-2)(2.45,-3)\qbezier(-1.5,-3)(1,-1.5)(4,0) \put(1.2,-1.2){O}\end{picture}

____________________________________

LET,

Side of rhombus = S

then,

perimeter of rhombus = 40

4 S = 40

S = 10 units

____________________________________

Let,

Diagonal AC = 16 units

then,

diagonals of rhombus bisect each other perpendicularly

OA = 8 units ;

∠ AOD = 90°

and , Side = AD = 10 units

____________________________________

Using Pythagoras theorem in Δ AOD

OA² + OD² = AD²

( 8 )² + OD² = (10)²

OD² = 100 - 64

OD² = 36

OD = 6 units

____________________________________

Now,

BD = 2 (OD) = 2 (6) = 12 units

so,

we have Diagonals of rhombus as

d₁ = 16 units and d₂ = 12 units

therefore,

ar (rhombus) = 1/2 × d₁ × d₂

ar (rhombus) = 1/2 × 16 × 12

ar (rhombus) = 96 square units.

____________________________________



Discussion

No Comment Found

Related InterviewSolutions