| 1. |
Area of the Rhombus whose perimeter is equal to 40 if one diagonal is equal to 16 |
Answer» Answer:ar (rhombus) = 96 square units. Step-by-step explanation:____________________________________ ____________________________________ LET, Side of rhombus = S then, perimeter of rhombus = 40 4 S = 40 S = 10 units ____________________________________ Let, Diagonal AC = 16 units then, ∵ diagonals of rhombus bisect each other perpendicularly ∴ OA = 8 units ; ∠ AOD = 90° and , Side = AD = 10 units ____________________________________ Using Pythagoras theorem in Δ AOD OA² + OD² = AD² ( 8 )² + OD² = (10)² OD² = 100 - 64 OD² = 36 OD = 6 units ____________________________________ Now, BD = 2 (OD) = 2 (6) = 12 units so, we have Diagonals of rhombus as d₁ = 16 units and d₂ = 12 units therefore, ar (rhombus) = 1/2 × d₁ × d₂ ar (rhombus) = 1/2 × 16 × 12 ar (rhombus) = 96 square units. ____________________________________ |
|