Saved Bookmarks
| 1. |
As shown in figure, a plano-concave lens is placed in such a way that it becomes completely fit with plano-convex lens. Their plane surfaces are parallel. If their refractive indices are 1.6 and 1.5 respectively and radius of curvature is R, then focal length of combination is ..... |
|
Answer» `(R)/(6.2)` For first LENS,` (1)/(f_1)=(n-1)((1)/(R_1)-(1)/(R_2))` `R_1= INFTY,R_2=-R,n=mu_1` `(1)/(f_1)=(mu_1-1)((1)/(infty)+(1)/(R))` `therefore (1)/(f_1)=(mu-1)/(R)` … (1) For SECOND lens, `(1)/(f_2)=(n-1)((1)/(R_1)-(1)/(R_2))` `R_1=-R,R_2=infty,n-mu_2` `(1)/(f_2)=(mu_2-1)(-(1)/(R)-(1)/(infty))` `infty (1)/(f_2)=(1-mu_2)/(R)` ... (2) Focal LENGTH of combination,`1/f=(1)/(f_1)+(1)/(f_2)=(mu_1-1)/(R)+(1-mu_2)/(R)` `therefore 1/f=(mu_1-mu_2)/(R)` `therefore f=(R)/(mu_1-mu_2)=(R)/(1.6-1.5)=(R)/(0-1)` |
|