Saved Bookmarks
| 1. |
Assuming the moment of inertia of the pulley to be Iand its radius to be r. |
|
Answer» `m_2g-T_2=m_2ga,-m_1g+T_1=m_1a,M=IDeltaomega//Deltat` The torque is `M=(T_2-T_1)r.` The variation of the angular VELOCITY is `Deltaomega=omega_2-omega_1=(v_2)/r-(v_1)/r= (aDeltat)/r` We `m_2g-T_2=m_2a,-m_1g+T_1=m_1a_1,""T_2-T_1=(Ia)/(r^2)` Hence `a=((m_2-m_1)G)/(m_1+m_2+I//r^2),T_1=(2m_1m_2g(1+I//2m_2r^2))/(m_1+m_2+I//r^2)` `T_2=(2m_1m_2g(1+I//2m_1r^2))/(m_1+m_2+I//r^2)` For `I//r^2 lt lt m_1+m_2` we obtain the answer to Problem 3.2
|
|