Saved Bookmarks
| 1. |
At t=0, a force F=at^(2) is applied to a small body of mass m at an angle alpha resting on a smooth horizontal plane |
|
Answer» velocity of the body at the moment it brakes off the plane is `sqrt((mg^(3))/(9a tan^(2)alphasinalpha))` `F sin alpha=mg` `rArrat_(0)^(2)sinalpha=mg` `RARR t_(0)=sqrt((mg)/(asinalpha))` SPEED at time of breaking off `v=int_(0)^(t_(0))(at^(2)COSALPHA)/(m)dt=(at_(0)^(2)cosalpha)/(3m)` `=(acosalpha)/(3m)*(mg)/(asinalpha)sqrt((mg)/(asinalpha))` `=sqrt((mg^(3))/(9atan^(2)alphasinalpha))` `a=(Fcosalpha)/(m)=(at_(0)^(2)cosalpha)/(m)=(AMG)/(asinalpha)*(cosalpha)/(m)` `=gcotalpha` `s=intvdt=int_(0)^(t_(0))(at^(3))/(3m)cosalphadt` `=(a)/(12m)t_(0)^(4)=(a)/(12m)*(m^(2)g^(2)cosalpha)/(a^(2)sin^(2)alpha)` `=(mg^(2))/(12a tanalphasinalpha)` |
|