InterviewSolution
| 1. |
b) State and prove Bernoulli's principle for the flow of non-viscous fluids. |
|
Answer» Bernoulli’s Theorem States That: As we move along a streamline, the sum of the pressure (P), the kinetic energy, the per unit volume (ρ and the potential energy per unit volume (ρgh) remains a constant.” • Proof:  *Consider a fluid moving in a pipe if varying cross-sectional area. *Let the pipe have varying heights & the fluid flowing is incompressible. *Fluid is initially at E and flows to B. Consider the parts of the tube BC & DE which are equal in volume, thus having equal volume of fluid. Distance fluid travels at left end è v2 Δt Distance fluid travels at right end è v1 Δt Work done on fluid at left end è W=-F.d è W=-P.A.d è W2= -P2.A2.v2 Δt Work done on fluid at left end è W=F.d è W=P.A.d è W1=P1.A1.v1 Δt Ai.Vi Δt = ΔV W1-W2 = (P1-P2). ΔV (Volumes are same) Also, W= Kinetic Energy + Potential Energy. ρ=m/v è m=ρ.v è m=ρ.ΔV ΔKE of fluid from top to bottom = (1/2).ρ. ΔV(V22-V12) ΔPE of fluid from top to bottom = ρ. ΔV.g.(h2-h1) Applying Work-Energy theorem… ΔW= (1/2).ρ. ΔV(V22-V12) + ρ. ΔV.g.(h2-h1) Equating Eq.1 & Eq.2 (P1-P2). ΔV = (1/2).ρ. ΔV(V22-V12) + ρ. ΔV.g.(h2-h1) (P1-P2)= (1/2).ρ.(V22-V12) + ρ.g.(h2-h1) Re-arranging, P1 + (1/2).ρ.V12 + ρ.g.(h1) = P2 + (1/2).ρ.V22 + ρ.g.(h2) --> P + (1/2)ρV2 + ρgh = Constant [Cancelling ΔV |
|