InterviewSolution
| 1. |
बहुपद f (x) = x3 + 3px2 + 3qr + r के मूलों के समान्तर श्रेणी में होने के प्रतिबन्ध ज्ञात कीजिए। |
|
Answer» यदि f (x) = x3 + 3px2 + 3qx + r ∵ मूल समान्तर श्रेणी में हैं। अतः माना α = a – d, β = a, γ = a + d ∴ α + β + γ = \(\frac{-b}{a}\) a – d + a + a + d = \(\frac{-3p}{1}\) ⇒ 3a = -3p ⇒ a = -p तथा α·β + β·γ + γ·α = \(\frac{c}{a}\) (a – d) × a + a × (a + d) + (a + d)·(a – d) = \(\frac{3q}{2}\) a2 – ad + a2 + ad + a2 – d2 = 3q 3a2 – d2 = 3q a = -p रखने पर, 3(-p)2 – d2 = 3q -3p2 – d2 = 3q d2 = 3p2 – 3q अब α·β·γ = \(\frac{-d}{a}\) (a – d) × a × (a + d) = \(\frac{-r}{1}\) a × (a2 – d2) = -r a = -p तथा d2 = 3p2 – 3q रखने पर, (-p) x [p2 – (3p2 – 3q)] = -r -p(p2 – 3p2 + 3q) = -r p(-2p2 + 3q) = r -2p3 + 3pq = r -2p3 + 3pq – r = 0 2p3 – 3pq + r = 0 |
|