1.

बहुपद f (x) = x3 + 3px2 + 3qr + r के मूलों के समान्तर श्रेणी में होने के प्रतिबन्ध ज्ञात कीजिए।

Answer»

यदि f (x) = x3 + 3px2 + 3qx + r

∵ मूल समान्तर श्रेणी में हैं।

अतः माना α = a – d, β = a, γ = a + d

∴ α + β + γ = \(\frac{-b}{a}\)

a – d + a + a + d = \(\frac{-3p}{1}\)

⇒ 3a = -3p

⇒ a = -p

तथा α·β + β·γ + γ·α = \(\frac{c}{a}\)

(a – d) × a + a × (a + d) + (a + d)·(a – d) = \(\frac{3q}{2}\)

a2 – ad + a2 + ad + a2 – d2 = 3q

3a2 – d2 = 3q

a = -p रखने पर,

3(-p)2 – d2 = 3q

-3p2 – d2 = 3q

d2 = 3p2 – 3q

अब α·β·γ = \(\frac{-d}{a}\)

(a – d) × a × (a + d) = \(\frac{-r}{1}\)

a × (a2 – d2) = -r

a = -p तथा d2 = 3p2 – 3q रखने पर,

(-p) x [p2 – (3p2 – 3q)] = -r

-p(p2 – 3p2 + 3q) = -r

p(-2p2 + 3q) = r

-2p3 + 3pq = r

-2p3 + 3pq – r = 0

2p3 – 3pq + r = 0



Discussion

No Comment Found

Related InterviewSolutions