1.

\(\bigg[1+cos\fracπ8\bigg]\)\(\bigg[1+cos\frac{3π}8\bigg]\)\(\bigg[1+cos\frac{5π}8\bigg]\)\(\bigg[1+cos\frac{7π}8\bigg]\) is equal to(a) \(\frac18\) (b) \(\frac12\)(c) \(\frac{1+\sqrt2}{2\sqrt2}\)(d) cos\(\fracπ8\)

Answer»

(a) \(\frac18\)

\(\bigg(1+cos\fracπ8\bigg)\)\(\bigg(1+cos\frac{3π}8\bigg)\)\(\bigg(1+cos\frac{5π}8\bigg)\)\(\bigg(1+cos\frac{7π}8\bigg)\)

\(\bigg(1+cos\fracπ8\bigg)\)\(\bigg(1+cos\frac{3π}8\bigg)\)\(\bigg(1+cos\bigg(π-cos\frac{3π}8\bigg)\bigg)\)\(\bigg(1+cos\bigg(π-\frac{π}8\bigg)\bigg)\)

=  \(\bigg(1+cos\fracπ8\bigg)\)\(\bigg(1+cos\frac{3π}8\bigg)\)\(\bigg(1-cos\frac{3π}8\bigg)\)\(\bigg(1-cos\frac{π}8\bigg)\)        (cos (π – θ) = – cos θ)

\(\bigg(1-cos^2\fracπ8\bigg)\)\(\bigg(1-cos^2\frac{3π}8\bigg)\) = sin2 \(\fracπ8\)  sin2 \(\frac{3π}8\)

=  sin2 \(\fracπ8\)  cos2 \(\frac{π}8\) \(\bigg(∵ sin\frac{3π}{8}= sin\bigg(\fracπ2-\fracπ8\bigg)=cos\fracπ8\bigg)\)

\(\frac14\bigg(4\,sin^2\fracπ8cos^2\fracπ8\bigg)\) = \(\frac14\bigg(2\,sin\fracπ8\,cos\fracπ8\bigg)^2\)

\(\frac14\big(sin\fracπ4\big)^2\,\frac14\big(\frac1{\sqrt2}\big)^2=\frac18.\)             (Using, 2 sin θ cos θ = sin 2θ)



Discussion

No Comment Found