Saved Bookmarks
| 1. |
Calculate the mass defect, binding energy and building energy per nucleon of an alpha particle (An alpha -particle is nothing but helium nucleus. Hence its symbol is ""_(2)He^4 . It contains 2 protons , 2 neutrons with a mass number 4. Mass hydrogen atom m_H = 1.007825u : Mass of neutron m_(n) = 1.008665u : Atomic number of helium Z = 2 , Mass number of helium A = 4 , Mass of helium atom m_(a) = 4.00260u ) |
|
Answer» Solution :Mass defect, `Deltam = Zm_(H) +(A-Z) m_n-m_(a)` `[(2) (1.007825) +(4-2)(1.008665)-4.00260]U` `= (2xx1.007825+2xx1.008665-4.00260)u` Mass defect, `Deltam = 0.03038` u `:.` Binding energy of the nucleus `=(Deltam)C^2` `= (0.03038) u xxC^2` `= 0.030 38 xx 931.5 MeV ( :. 1u xxC^(2) = 931.5 MeV)` = 28 . 3 MeV Binding Energy per nucleon `= (28.3)/4` MeV Biding energy per nucleon = 7.075 MeV |
|