1.

Calculate the mass defect, binding energy and building energy per nucleon of an alpha particle (An alpha -particle is nothing but helium nucleus. Hence its symbol is ""_(2)He^4 . It contains 2 protons , 2 neutrons with a mass number 4. Mass hydrogen atom m_H = 1.007825u : Mass of neutron m_(n) = 1.008665u : Atomic number of helium Z = 2 , Mass number of helium A = 4 , Mass of helium atom m_(a) = 4.00260u )

Answer»

Solution :Mass defect,
`Deltam = Zm_(H) +(A-Z) m_n-m_(a)`
`[(2) (1.007825) +(4-2)(1.008665)-4.00260]U`
`= (2xx1.007825+2xx1.008665-4.00260)u`
Mass defect, `Deltam = 0.03038` u
`:.` Binding energy of the nucleus `=(Deltam)C^2`
`= (0.03038) u xxC^2`
`= 0.030 38 xx 931.5 MeV ( :. 1u xxC^(2) = 931.5 MeV)`
= 28 . 3 MeV
Binding Energy per nucleon `= (28.3)/4` MeV
Biding energy per nucleon = 7.075 MeV


Discussion

No Comment Found

Related InterviewSolutions