InterviewSolution
Saved Bookmarks
| 1. |
Calculate the strength of the transverse magnetic field required to bend all photoelectorns within a circle of radius 50 cm, when light of wavelength 4000Å is incident on a barium emitter. Work function of barium is 2.5eV. Given, `m_e=9.1xx10^(-31)kg, e=1.6xx10^(-19)C, h=6.6xx10^(-34)Js.` |
|
Answer» Here, B=? , r=50cm=0.50m, `lambda=4000Å=4000xx10^(-10)m=4xx10^-7m,` `phi_02.5eV=2.5xx1.6xx10^(-19)J`. As, `1/2mv_(max)^2=(hc)/lambda-phi_0` or `v_(max)^2=2/m[(hc)/lambda-phi_0]` `=2/(9.1xx10^(-31))` `xx[((6.6xx10^(-34))xx(3xx10^8))/(4xx10^-7)-2.5xx1.6xx10^(-19)]` `=20.88xx10^(10)` `:. v_(max)=4.75xx10^5m//s` Now, `Bev_(max)=mv_(max)^2//r` or `B=(mv_(max))/(er)=((9.1xx10^(-31))xx(4.57xx10^5))/((1.6xx10^(-19))xx0.50)` `5.2xx10^-6T` |
|