| 1. |
Can u pls do it,.....fast |
Answer» QUESTION 12 :Solution :-• Given : x = 3 - 2√2 • To find : i. 1/x ii. x + 1/x III. x² + 1/x² i. We have x = 3 - 2√2 => 1/x = 1/(3 - 2√2) => 1/x = (3 + 2√2) / (3 - 2√2)•(3 + 2√2) => 1/x = (3 + 2√2) / [ 3² - (2√2)² ] => 1/x = (3 + 2√2) / (9 - 8) => 1/x = (3 + 2√2) / 1 => 1/x = 3 + 2√2 ii. We have x = 3 - 2√2 and 1/x = 3 + 2√2 => x + 1/x = 3 - 2√2 + 3 + 2√2 => x + 1/x = 6 iii. We have x + 1/x = 6 => (x + 1/x)² = 6² {on squaring both sides} => x² + 2•x•(1/x) + (1/x)² = 36 => x² + 2 + 1/x² = 36 => x² + 1/x² = 36 - 2 => x² + 1/x² = 34 ×××××××××××××××××××××××××××××××××××× Question 13 :Solution :-We NEED to find the value of ; 2/(√5 + √3) + 1/(√3 + √2) - 3/(√5 + √2) Now , • 2/(√5 + √3) = 2(√5 - √3) / (√5 + √3)•(√5 - √3) = 2(√5 - √3) / [ (√5)² - (√3)² ] = 2(√5 - √3) / (5 - 3) = 2(√5 - √3) / 2 = √5 - √3 • 1/(√3 + √2) = (√3 - √2) / (√3 + √2)•(√3 - √2) = (√3 - √2) / [ (√3)² - (√2)² ] = (√3 - √2) / (3 - 2) = (√3 - √2) / 1 = √3 - √2 • 3/(√5 + √2) = 3(√5 - √2) / (√5 + √2)•(√5 - √2) = 3(√5 - √2) / [ (√5)² - (√2)² ] = 3(√5 - √2) / (5 - 2) = 3(√5 - √2) / 3 = √5 - √2 Now , 2/(√5 + √3) + 1/(√3 + √2) - 3/(√5 + √2) = (√5 - √3) + (√3 - √2) - (√5 - √2) = √5 - √3 + √3 - √2 - √5 + √2 = 0 Hence ,2/(√5 +√3) + 1/(√3 +√2) - 3/(√5 +√2) = 0 |
|