1.

Check if the following function have an inverse function. If yes, find the inverse function.f(x) = \(\sqrt{4x+5}\) √(4x + 5)

Answer»

f(x) = \(\sqrt{4x+5},x\geq\frac{-5}4\)

Let f(x1) = f(x2)

\(\therefore\) \(\sqrt{4x_1+5}=\sqrt{4x_2+5}\)

\(\therefore\) x1 = x2

∴ f is a one-one function.

f(x) = \(\sqrt{4x+5}=y, \) say(y) \(\geq0\)

Squaring on both sides, we get

y2 = 4x + 5

∴ x = \(\frac{y^2-5}4\) 

∴ For every y we can get x.

∴ f is an onto function.

∴ x = \(\frac{y^2-5}4=f^{-1}(y)\) 

Replacing y by x, we get

f-1(x) = \(\frac{x^2-5}4\) 



Discussion

No Comment Found