Saved Bookmarks
| 1. |
Check if the following function have an inverse function. If yes, find the inverse function.f(x) = \(\sqrt{4x+5}\) √(4x + 5) |
|
Answer» f(x) = \(\sqrt{4x+5},x\geq\frac{-5}4\) Let f(x1) = f(x2) \(\therefore\) \(\sqrt{4x_1+5}=\sqrt{4x_2+5}\) \(\therefore\) x1 = x2 ∴ f is a one-one function. f(x) = \(\sqrt{4x+5}=y, \) say(y) \(\geq0\) Squaring on both sides, we get y2 = 4x + 5 ∴ x = \(\frac{y^2-5}4\) ∴ For every y we can get x. ∴ f is an onto function. ∴ x = \(\frac{y^2-5}4=f^{-1}(y)\) Replacing y by x, we get f-1(x) = \(\frac{x^2-5}4\) |
|