InterviewSolution
| 1. |
Class 11 Maths MCQ Questions of Trigonometric Functions with Answers? |
|
Answer» Class 11 Maths MCQ Questions of Trigonometric Functions with Answers are prepared for college students of class 11 to assist them score better marks within the examination. the entire topic of trigonometric functions is meant by the topic experts following the newest guidelines of CBSE. The class 11 maths trigonometric functions important MCQ questions feature the step-by-step solutions for straightforward to difficult questions consistent with the understanding level of the students. These MCQ Questions can also help students to fast revision, because the students solve these important questions, they’re going to easily develop a command over the subject of trigonometric functions. Practice MCQ Questions for class 11 Maths Chapter-Wise 1. The value of cos2x + cos2 y – 2cosx × cosy × cos (x + y) is (a) sin (x + y) 2. If a×cos x + b × cos x = c, then the value of (a × sin x – b2cos x)2 is (a) a2 + b2 + c2 3. The value of cos 5π is (a) 0 4. In a triangle ABC, cosec A (sin B cos C + cos B sin C) equals (a) none of these 5. The value of cos 180° is (a) 0 6. The perimeter of a triangle ABC is 6 times the arithmetic mean of the sines of its angles. If the side b is 2, then the angle B is (a) 30° 7. If 3 × tan(x – 15) = tan(x + 15), then the value of x is (a) 30 8. If the sides of a triangle are 13, 7, 8 the greatest angle of the triangle is (a) π/3 9. The value of tan 20 × tan 40 × tan 80 is (a) tan 30 10. The value of cos 20 + 2sin2 55 – \(\sqrt2\;sin65\) (a) 0 11. If the radius of the circumcircle of an isosceles triangle PQR is equal to PQ ( = PR), then the angle P is (a) 2π/3 12. The value of 4 × sinx × sin(x + π/3) × sin(x + 2π/3) is (a) sin x 13. The value of (sin 7x + sin 5x) /(cos 7x + cos 5x) + (sin 9x + sin 3x) / (cos 9x + cos 3x) is (a) tan 6x 14. What is the value of cot (– 870°)? (a) \(\sqrt3\) 15. The value of cos2 48° - sin2 12° is (a) \(\frac{\sqrt{5}+1}{8}\) 16. The value of tan 20° + 2 tan 50° – tan 70° is : (a) 1 17. The value of tan 20° + 2 tan 50° – tan 70° is : (a) \(\frac{1}{\sqrt2}\) 18. If A = sin2 x + cos4x, then for all real x : (a) 13/16≤ A ≤ 1 19. The value of cos12° + cos84° + cos156° + cos 132° is (a) 1/2 20. The value of cos 420° is (a) 0 Answer: 1. Answer: (b) sin2 (x + y) Explanation: cos2x + cos2y – 2co x × cosy × cos(x + y) {since cos(x + y) = cosx x cos y – sin x × sin y } = cos2x + cos2y – 2cosx × cosy × (cosx × cosy – sinx × siny) = cos2x + cos2y – 2cos2x × cos2y + 2cosx × cosy × sinx × siny = cos2x + cos2y – cos2x × cos2y – cos2x × cos2y + 2cosx × cosy × sinx × siny = (cos2x – cos2 x × cos2 y) + (cos2y – cos2x × cos2y) + 2cosx × cosy × sinx × siny = cos2x(1- cos2y) + cos2 y(1 – cos2x) + 2cosx × cosy × sinx × siny = sin2y × cos2x + sin2x × cos2y + 2cosx × cosy × sinx × siny (since sin2x + cos2x = 1 ) = sin2x × cos2y + sin2y × cos2x + 2cosx × cosy × sinx × siny = (sinx × cosy)2 + (siny × cosx)2 + 2cosx × cosy × sinx × siny = (sinx × cosy + siny × cosx)2 = {sin (x + y)}2 = sin2 (x + y) 2. Answer: (d) a2 + b2 – c2 Explanation: a × cosx + b × sinx)2 + (a × sinx – b × cosx)2 = a2 + b2 ⇒ c2+ (a × sinx – b × cosx)2 = a2 + b2 ⇒ (a × sinx – b × cosx)2 = a2 + b2 – c2 3. Answer: (c) -1 Explanation: cos 5π = cos (π + 4π) cos ( 5 × 180° ) = cos 900° = cos ( 10 × 90° + 0° ) = - cos 0° = - 1 4. Answer: (c) 1 Explanation: Given cosec A (sin B cos C + cos B sin C) = cosecA × sin(B+C) = cosecA × sin(180 – A) = cosecA × sin A = cosecA × 1/cosec A = 1 5. Answer: (c) -1 Explanation: cos 180 = cos(90° + 90°) = -sin 90° = -1 {sin90° = 1} cos180° = -1 6. Answer: (b) 90° Explanation: Let the lengths of the sides if ∆ABC be a, b and c Perimeter of the triangle = 2s = a + b + c = 6(sinA + sinB + sinC)/3 ⇒ (sinA + sinB + sinC) = ( a + b + c)/2 ⇒ (sinA + sinB + sinC)/( a + b + c) = 1/2 From sin formula,Using sinA/a = sinB/b = sinC/c = (sinA + sinB + sinC)/(a + b + c) = 1/2 Now, sinB/b = 1/2 Given b = 2 So, sinB/2 = 1/2 ⇒ sinB = 1 ⇒ B = π/2 7. Answer: (b) 45 Explanation: Given, 3×tan(x – 15) = tan(x + 15) ⇒ tan(x + 15)/tan(x – 15) = 3/1 ⇒ {tan(x + 15) + tan(x – 15)}/{tan(x + 15) – tan(x – 15)} = (3 + 1)/(3 – 1) ⇒ {tan(x + 15) + tan(x – 15)}/{tan(x + 15) – tan(x – 15)} = 4/2 ⇒ {tan(x + 15) + tan(x – 15)}/{tan(x + 15) – tan(x – 15)} = 2 ⇒ sin(x + 15 + x – 15)/sin(x + 15 – x + 15) = 2 ⇒ sin 2x/sin 30 = 2 ⇒ sin 2x/(1/2) = 2 ⇒ 2 × sin 2x = 2 ⇒ sin 2x = 1 ⇒ sin 2x = sin 90 ⇒ 2x = 90 ⇒ x = 45 8. Answer: (c) 2π/3 Explanation: Given, the sides of a triangle are 13, 7, 8 Since greatest side has greatest angle, Now Cos A = (b2 + c2 – a2)/2bc ⇒ Cos A = (72 + 88 – 132)/(2×7×8) ⇒ Cos A = (49 + 64 – 169)/(2×7×8) ⇒ Cos A = (113 – 169)/(2×7×8) ⇒ Cos A = -56/(2×56) ⇒ Cos A = -1/2 ⇒ Cos A = Cos 2π/3 ⇒ A = 2π/3 So, the greatest angle is = 2π/3 9. Answer: (b) tan 60 Explanation: tan20 × tan40 × tan80 = tan40 × tan80 × tan20 = [{sin40 × sin80}/{cos40 × cos80}] × (sin20/cos20) = [{2 x sin40 × sin80}/{2 × cos40 × cos80}] × (sin20/cos20) = [{cos40 – cos120}/{cos120 + cos40}] × (sin20/cos20) = [{cos40 – cos (90 + 30)}/{cos(90 + 30) + cos40}] × (sin 20/cos 20) = [{cos40 + sin30}/{-sin30 + cos40}] × (sin20/cos 20) = [{(2 × cos40 + 1)/2}/{(-1 + cos40)/2}] × (sin20/cos20) = [{2 × cos40 + 1}/{-1 + cos40}] × (sin 20/cos20) = [{2 × cos40 × sin20 + sin20}/{-cos20 + cos40 × cos20}] = (sin60 – sin20 + sin20)/(-cos20 + cos60 + cos20) = sin60/cos60 = tan 60 10. Answer: (b) 1 Explanation: Given, cos 20 + 2sin2 55 – \(\sqrt2\;sin65\) = cos20 + 1 – cos110 – \(\sqrt 2\;sin 65\) {since cos 2x = 1 – 2sin2 x} = 1 + cos20 – cos 110 – √\(\sqrt \;sin 65\) = 1 – 2 × sin {(20 + 110)/2 × sin{(20 – 110)/2} – \(\sqrt 2\;sin 65\) {Apply cos C – cos D formula} = 1 – 2 × sin65 × sin (-45) – \(\sqrt2\;sin 65\) = 1 + 2 × sin65 × sin45 – \(\sqrt 2\;sin 65\) = 1 + (2 × sin 65)/\(\sqrt2\) – \(\sqrt 2\;sin 65\) = 1 + \(\sqrt2\) ( sin 65 – √2 sin 65 = 1 11. Answer: (a) 2π/3 Explanation: In ΔPQR PQ = PR = R1 and Q = R where R1 is circumradius from sine rule: PQ/sin R = 2R1 Sin R = 1/2 R = 1/2 R = π/6 P = π−Q −R = π - 2R = 2π/3 12. Answer: (c) sin 3x Explanation: 4 × sinx × sin(x + π/3) × sin(x + 2π/3) = 4 × sinx × {sinx × cos π/3 + cosx × sin π/3} × {sinx × cos 2π/3 + cos x × sin 2π/3} = 4 × sin x × {(sin x)/2 + ((c) sin 3x cos x)/2} × {-(sin x)/2 + (√3 × cos x)/2} = 4 × sin x × {-(sin 2x)/4 + (3 × cos 2x)/4} = sinx × {-sin 2x + 3 × cos 2x} = sinx × {-sin 2x + 3 × (1 – sin 2x)} = sinx × {-sin 2x + 3 – 3 × sin 2x} = sinx × {3 – 4 × sin 2x} = 3 × sinx – 4 sin 3x = sin 3x So, 4 × sin x × sin(x + π/3) × sin(x + 2π/3) = sin 3x 13. Answer: (b) 2 tan 6x Explanation: (sin 7x + sin 5x) /(cos 7x + cos 5x) + (sin 9x + sin 3x) / (cos 9x + cos 3x) ⇒ [{2 × sin(7x+5x)/2 × cos(7x-5x)/2}/{2 × cos(7x+5x)/2 × cos(7x-5x)/2}] + [{2 × sin(9x+3x)/2 × cos(9x 3x)/2}/{2 × cos(9x+3x)/2 × cos(9x-3x)/2}] ⇒ [{2 × sin 6x × cosx}/{2 × cos 6x × cosx}] + [{2 × sin 6x × cosx}/{2 × cos6x × cosx}] ⇒ (sin 6x/cos 6x) + (sin 6x/cos 6x) ⇒ tan 6x + tan 6x ⇒ 2 tan 6x 14. Answer: (a) Explanation: cot(−870°)=−cot(2×360°+150°) =−cot150° =−cot(180°−30°) cot30° = \(\sqrt3\) 15. Answer: (a) Explanation: cos2 48°– sin2 12° = cos (48°+ 12°) cos (48° – 12°) = cos60° cos36° = \(\frac{1}{2}\times\frac{\sqrt5+1}{4}\) \(=\frac{\sqrt5+1}{8}\) 16. Answer: (b) 0 Explanation: 50°= 70° – 20° Taking “tan” on both sides, tan 50° = tan(70° – 20°) = (tan 70° – tan 20°)/(1 + tan 70° tan 20°) = (tan 70° – tan 20°)/ [1 + tan(90° – 20°) tan 20°] = (tan 70° – tan 20°)/ (1 + cot 20° tan 20°) = (tan 70° – tan 20°)/(1 + 1) 2 tan 50° = tan 70° – tan 20° 2 tan 50° + tan 20° – tan 70° = 0 17. Answer: (b) 0 Explanation: cos1°, cos2°, cos3° .............cos179° = cos1°, cos2°, cos3° .............cos90° .....cos179° = cos1°, cos2°, cos3° .............cos90° .....cos179° = 0 As [cos90°= 0] 18. Answer: (d) 3/4≤ A ≤ 1 Explanation: A = sin2x + cos2x We have cos4x ≤ cos2x sin2x = sin2x Adding sin2x + cos4x ≤ sin2x + cos2x ∴ A ≤ 1. Again A = t + (1 – t)2 = t2 – t + 1, t ≥ 0, where minimum is 3/4. Thus 3/4 ≤ A ≤ 1 . 19. Answer: (c) -1/2 Explanation: cos 12°+cos 84°+cos 156°+cos 132° = (cos 12°+cos 132°)+(cos 84°+cos 156°) = 2cos 72°cos 60°+2cos 120°cos 36° =cos 72°—cos 36° =sin18°—cos 36° =−1/2 20. Answer: (c) 1/2 Explanation: cos(360°+A) = cos(A) 420° = 360°+ 60° cos (420°) = cos(60°) = 1/2 Click here to practice MCQ Questions for Trigonometric Functions class 11 |
|