1.

Classify the following function as injection, surjection or bijection:(i) f: N → N given by f(x) = x2(ii) f: Z → Z given by f(x) = x2(iii) f: N → N given by f(x) = x3(iv) f: Z → Z given by f(x) = x3(v) f: R → R, defined by f(x) = |x|

Answer»

(i) Given as f: N → N, given by f(x) = x2

Let us check for the given function is injection, surjection and bijection condition.

Injection condition:

Let x and y be any two elements in domain (N), such that f(x) = f(y).

f(x) = f(y)

x= y2

x = y (We do not get ± because x and y are in N that is natural numbers)

So, f is an injection.

Surjection condition:

Let y be any element in the co-domain (N), such that f(x) = y for some element x in N (domain).

f(x) = y

x2= y

x = √y, which may not be in N.

For example, if y = 3,

x = √3 is not in N.

So, f is not a surjection.

Also f is not a bijection.

(ii) Given f: Z → Z, given by f(x) = x2

Let us check for the given function is injection, surjection and bijection condition.

Injection condition:

Let x and y be any two elements in domain (Z), such that f(x) = f(y).

f(x) = f(y)

x= y2

x = ±y

Therefore, f is not an injection.

Surjection test:

Let y be any element in the co-domain (Z), such that f(x) = y for some element x in Z (domain).

f(x) = y

x= y

x = ± √y which may not be in Z.

For example, if y = 3,

x = ± √3 is not in Z.

So, f is not a surjection.

Also f is not bijection.

(iii) Given f: N → N given by f(x) = x3

Let us check for the given function is injection, surjection and bijection condition.

Injection condition:

Let x and y be any two elements in domain (N), such that f(x) = f(y).

f(x) = f(y)

x3 = y3

x = y

So, f is an injection 

Surjection condition:

Let y be any element in the co-domain (N), such that f(x) = y for some element x in N (domain).

f(x) = y

x3= y

x = 3√y which may not be in N.

For example, if y = 3,

X = 3√3 is not in N.

So, f is not a surjection and f is not a bijection.

(iv) Given f: Z → Z given by f(x) = x3

Let us check for the given function is injection, surjection and bijection condition.

Injection condition:

Let x and y be any two elements in the domain (Z), such that f(x) = f(y)

f(x) = f(y)

x3 = y3

x = y

So, f is an injection.

Surjection condition:

Let y be any element in the co-domain (Z), such that f(x) = y for some element x in Z (domain).

f(x) = y

x3 = y

x = 3√y which may not be in Z.

For example, if y = 3,

x = 3√3 is not in Z.

So, f is not a surjection and f is not a bijection.

(v) Given f: R → R, defined by f(x) = |x|

Let us check for the given function is injection, surjection and bijection condition.

Injection test:

Let x and y be any two elements in domain (R), such that f(x) = f(y)

f(x) = f(y)

|x| = |y|

x = ± y

Therefore, f is not an injection.

Surjection test:

Let y be any element in co-domain (R), such that f(x) = y for some element x in R (domain).

f(x) = y

|x| = y

x = ± y ∈ Z

Therefore, f is a surjection and f is not a bijection.



Discussion

No Comment Found