

InterviewSolution
Saved Bookmarks
1. |
Co-efficient of variation of two distributions are 50 and 60 and their arithmetic means are 30 and 25 respectively. Find the difference of their standard deviation. |
Answer» Given, C.V1= 50, C.V2 = 60 \(\bar{x_1}=30\), \(\bar{x_2}=25\) We Know: C.V = \(\frac{σ}{x}\times100\) ⇒ \(\bar{x}=\)\(\frac{σ}{C.V}\times100\) ∴ \(\bar{x_1}=\)\(\frac{σ_1}{C.V_1}\times100\) ⇒ 30 = \(\frac{σ_1}{50}\times100\) ⇒ \(σ_1\) = 15 And, \(\bar{x_2}=\) \(\frac{σ_2}{C.V_2}\times100\) ⇒ 25 = \(\frac{σ_2}{60}\times100\) ⇒ \(σ_2\) \(=25\frac{3}{5}\) ⇒ \(σ_2\) \(=15\) ∴ Required difference = \(σ_1-σ_2\) = 15 − 15 = 0 |
|