1.

Consider an alpha-particle just in contact with .""_(92)^(238)U nucleus. Calculate the coulombic repulsion energy (i.e., the height of the coulombic barrier between ""^(238)U and the alpha-particle) assuming that the distance between them is equal to the sum of their radii. (r_(0)= 1.4 xx 10^(-13), e= 4.8 xx 10^(-10) esu)

Answer»

SOLUTION :Distance between `U^(238)` and `He^(4)` nuclei, d, = radius of `U^(238)`+ radius of `He^(4)`
`=1.4 xx 10^(-13) xx (238)^((1)/(3)) + 1.4 xx 10^(-13) xx (4)^((1)/(3))`
`=1.0899 xx 10^(-12)cm`
`therefore` COULOMBIC barrier `=(Z_(1)Z_(2) e^(2))/(d)`
`=(92 xx 2 xx (4.8 xx 10^(-10))^(2))/(1.0899 xx 10^(-12))`
`=3.899 xx 10^(-5)` erg


Discussion

No Comment Found