1.

Consider f: R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.

Answer»

Given function f: R → R given by f(x) = 4x + 3

Let us show that the given function is invertible.

Consider injection of f:

Let x and y be any two elements of domain (R),

Such that f(x) = f(y)

⇒ 4x + 3 = 4y + 3

⇒ 4x = 4y

⇒ x = y

Therefore, f is one-one.

Now surjection of f:                 

Let y be in the co-domain (R),

Such that f(x) = y.

⇒ 4x + 3 = y 

⇒ 4x = y - 3

⇒ x = (y - 3)/4 in R (domain)

⇒ f is onto.

Therefore, f is a bijection and, hence, is invertible.

Let us find f -1

Let f-1(x) = y ...(1)

⇒ x = f(y)

⇒ x = 4y + 3

⇒ x − 3 = 4y

⇒ y = (x - 3)/4

Now put these values in 1 we get

Therefore, f-1(x) = (x - 3)/4 



Discussion

No Comment Found