1.

Consider the decomposition of N_(2)O_(5) as N_(2)O_(5) to 2" NO"_(2)+(1)/(2)O_(2) The rate of reaction is given by -(d[N_(2)O_(5)])/(DT)=(1)/(2)(d[NO_(2)])/(dt)=2(d[O_(2)])/(dt)=k_(1)[N_(2)O_(5)] Therefore, -(d[N_(2)O_(5)])/(dt)=k_(1)[N_(2)O_(5)] +(d[NO_(2)])/(dt)=2k_(1)[N_(2)O_(5)]=k_(1)'[N_(2)O_(5)] +(d[O_(2)])/(dt)=(1)/(2)k_(1)[N_(2)O_(5)]=k_(1)''[N_(2)O_(5)] Choose the correct option

Answer»

`k_(1)=k_(1)'=k_(1)''`
`k_(1)=2" K"_(1)'=k_(1)''`
`2" k"_(1)=k_(1)'=4" k"_(1)''`
`4" k"_(1)=2" k"_(1)'=k_(1)''`

Solution :`-(d[N_(2)O_(5)])/(dt) = (1)/(2)(d[NO_(2)])/(dt) = 2""(d[O_(2)])/(dt)`
`k_(1)[N_(2)O_(5)] = (1)/(2) k_(1)'[N_(2)O_(5)] = 2k_(1)''[N_(2)O_(5)]`
or `k_(1) = (1)/(2)k_(1)' = 2k_(1)'' or 2k_(1) = k_(1)' = 4k_(1)''`


Discussion

No Comment Found