1.

Consider the equilibrium SO_(3) (g) hArr SO_(2) (g) + (1)/(2) O_(2) (g) ""K_(C ) = 1 What should be the initial concentration so that at equilibrium [SO_(3)] =[O_(2)]

Answer»

`(4)/(3) M`
`(1)/(3)M`
`(1)/(4)M`
`(3)/(4)M`

Solution :`{:(,SO_(3) (G),hArr,SO_(2) (g),+,(1)/(2) O_(2) (g),K_(C) = 1,),(t = 0,C_(0),,0,,0,,),("conc.",,,,,,,),(t = t_("eqm"),C_(0) - x,,x,,(x)/(2),,),("conc.",,,,,,,):}`
GIVEN `[SO_(3)] = (O_(2)]`
`C_(0) - x = (x)/(2)`
`(3x)/(2) = C_(0) RARR x = (2C_(0))/(3)`
at equilibrium `[O_(2)] = (x)/(2) = (C_(0))/(3), [SO_(2)] = x = (2C_(0))/(3), [SO_(3)] = C_(0) - x`
`[SO_(3)] = C_(0) - (2C_(0))/(3)`
`[SO_(3)] = (C_(0))/(3)`
`K_(C) = 1 = ([SO_(2)] [O_(2)]^(1//2))/([SO_(3)]) = ((2C_(0))/(3) xx ((C_(0))/(3))^(1//2))/((C_(0))/(3))`
`1 = 4 (C_(0))/(3)`
`C_(0) = (3)/(4) M`


Discussion

No Comment Found