InterviewSolution
Saved Bookmarks
| 1. |
Consider the expansion `(x^(2)+(1)/(x))^(15)`. What is the independent term in the given expansion ?A. 2103B. 3003C. 4503D. None of these |
|
Answer» Correct Answer - B `(x^(2)+(1)/(x))^(15)` `T_(r+1)=.^(15)C_(r)(x^(2))^(15-r)((1)/(x))^(r)` `=.^(15)C_(r)x^(30-2r-r)=.^(15)C_(r)x^(30-3r)` For independent term, `30 - 3r = 0 rArr r = 10` Put r = 10, we get `T_(10+1)=.^(15)C_(10)=(15!)/(10!5!)` `=(15 xx 14 xx 13 xx 12 xx 11 xx 10!)/(10! xx 1 xx 2 xx 3 xx 4 xx 5)=3003` |
|