1.

Consider the following two sequences,X = {-1, 1, -1, 1, ...} andY = {1, \(\frac{1}{2}\), 3, \(\frac{1}{4}\),...}.Then:1. both X and Y are divergent.2. both A and Y are convergent.3. X is convergent but Y is divergent.4. X is divergent but Y is convergent.

Answer» Correct Answer - Option 1 : both X and Y are divergent.

Concept:

Let, an is the nth term of a sequence then if,

\(\mathop {\lim }\limits_{n \to ∞ } {a_n} = 0\)

then the sequence converges else the sequence diverges

Analysis:

<!--[if gte vml 1]><![endif]--><!--[if !vml]-->

\(X = \left\{ { - 1,\;1,\; - 1,\;1,\; \ldots } \right\}\)

an = (-1)n

<!--[if gte msEquation 12]>limn→∞an=-1=1≠0<![endif]--><!--[if !msEquation]--><!--[if gte vml 1]><![endif]--><!--[if !vml]--><!--[endif]--><!--[endif]-->\(\mathop {\lim }\limits_{n \to ∞ } {a_n} = {\left( { - 1} \right)^∞ } \ne 0\) 

X is divergent

<!--[if gte vml 1]><![endif]--><!--[if !vml]-->\(Y = \left\{ {1,\frac{1}{2},\;3,\frac{1}{4}, \ldots } \right\}\)<!--[endif]--><!--[endif]-->

Now,

Yn = n; if n = odd

= 1/n; if n = even

For even terms the sequence is convergent (Since 1/n tends to 0 as n tends to ∞ )

For odd terms the sequence is divergent. 

∴ We cannot say that the sequence is convergent. 



Discussion

No Comment Found