InterviewSolution
| 1. |
Consider the following two sequences,X = {-1, 1, -1, 1, ...} andY = {1, \(\frac{1}{2}\), 3, \(\frac{1}{4}\),...}.Then:1. both X and Y are divergent.2. both A and Y are convergent.3. X is convergent but Y is divergent.4. X is divergent but Y is convergent. |
|
Answer» Correct Answer - Option 1 : both X and Y are divergent. Concept: Let, an is the nth term of a sequence then if, \(\mathop {\lim }\limits_{n \to ∞ } {a_n} = 0\) then the sequence converges else the sequence diverges Analysis: <!--[if gte vml 1]><![endif]--><!--[if !vml]-->\(X = \left\{ { - 1,\;1,\; - 1,\;1,\; \ldots } \right\}\) an = (-1)n <!--[if gte msEquation 12]>limn→∞an=-1∞=1≠0<![endif]--><!--[if !msEquation]--><!--[if gte vml 1]><![endif]--><!--[if !vml]--><!--[endif]--><!--[endif]-->\(\mathop {\lim }\limits_{n \to ∞ } {a_n} = {\left( { - 1} \right)^∞ } \ne 0\) ∴ X is divergent <!--[if gte vml 1]><![endif]--><!--[if !vml]-->\(Y = \left\{ {1,\frac{1}{2},\;3,\frac{1}{4}, \ldots } \right\}\)<!--[endif]--><!--[endif]--> Now, Yn = n; if n = odd = 1/n; if n = even For even terms the sequence is convergent (Since 1/n tends to 0 as n tends to ∞ ) For odd terms the sequence is divergent. ∴ We cannot say that the sequence is convergent. |
|