InterviewSolution
| 1. |
The sum of the series 1 + 2(a2 + 1) + 3(a2 + 1)2 + 4(a2 + 1)3 + ........... will be:1. \(\frac 1 {a^4}\)2. 13. \(-\frac 1 {a^2}\)4. -1 |
|
Answer» Correct Answer - Option 1 : \(\frac 1 {a^4}\) Concept: a + ar + ar2 + ar3 +….. Sum of the above infinite geometric series: \(=\frac{a}{1-r}\) Analysis: Given: 1 + 2(a2 + 1) + 3(a2 + 1)2 + 4(a2 + 1)3 + ...... let x = (a2 + 1) The series now becomes S = 1 + 2x + 3x2 + 4x3 + ...... ----(1) By multiplying x on both sides we get xS = x + 2x2 + 3x3 + 4x4 + ...... ----(2) Subtracting (1) and (2), we get S(1 - x) = 1 + x + x2 + x3 + ..... ---(3) The right hand side of (3) forms infinite geometric series with a = 1, r = x ∴ S(1 - x) = \(\frac{1}{1-x}\) \(\Rightarrow S = \frac{1}{(1-x)^2}\) putting the value of x, we get \(\Rightarrow S = \frac{1}{(1- a^2 - 1)^2}\) \(\Rightarrow S = \frac{1}{a^4}\) |
|