Saved Bookmarks
| 1. |
Consider the function f(x)=√x-2,g(x)=x+1÷x×x-2x+1 |
|
Answer» f(x)=LOGE(√1−x2−x)√1−x2−xx∈[−1,1]x∈[−1,0], √1−x2−x>0X>0√1−x2>x⇒1−x2>x2x∈(0,1√2)[−1,1√2]f'(x)=−x√1−x2−1√1−x2−xf'(x)>0 if −x√1−x2−1>0or −x−√1−x2>0or x∈[−1,−1√2)∴f(x)[−1,−1√2]⎛⎜⎝−1√2,1√2∴ f has local MAX, at x=−1/√2limx→1√2loge(√1−x2−x)=−∞∴ f has no MINIMA. |
|