Saved Bookmarks
| 1. |
Consider . The potential difference V_(A)-V_(B) is. |
|
Answer» `E[(C_(1)C_(4)-C_(2)C_(3))/((C_(1)+C_(2))(C_(3)+C_(4)))]` Taking loop containing `C_(1),C_(2),` and `E`, we GET `q/C_(1)+q/C_(2)-E=0` or `q=E[(C_(1)C_(2))/(C_(1)+C_(2))]` Similarly, from loop containing `C_(3), C_(4)`, and `E`, we get `(q')/C_(3)+(q')/C_(4)-E=0` or `q'=E[(C_(3)C_(4))/(C_(3)+C_(4))]` Now, `V_(A)-V_(B)=q/C_(2)-(q')/C` `=E[C_(1)/(C_(1)+C_(2))-C_(3)/(C_(3)+C_(4))]` `=E[(C_(1)C_(4)-C_(3)C_(2))/((C_(1)+C_(2))(C_(3)+C_(4)))]` Now `V_(A)-V_(B)=ErArrC_(1)C_(4)-C_(2)C_(3)=0` or `C_(1)/C_(2)=C_(3)/V_(4)`. |
|