1.

Convert [1,-1,2,3] into an identity matrix by suitable row transformations.

Answer»

Let A = [1,-1,2,3]

\( \begin{bmatrix}1 & -1 \\[0.3em]2 &3 \\[0.3em]\end{bmatrix}\)

By R2 – 2R1, we get,

A ~ \( \begin{bmatrix}1 & -1 \\[0.3em]0 &5 \\[0.3em]\end{bmatrix}\)

By (\(\frac{1}{5}\)) R2, we get,

A ~ \( \begin{bmatrix}1 & -1 \\[0.3em]0 &1 \\[0.3em]\end{bmatrix}\)

By R1 + R2, we get,

A ~ \( \begin{bmatrix}1 & 0 \\[0.3em]0 &1 \\[0.3em]\end{bmatrix}\)

This is an identity matrix.



Discussion

No Comment Found

Related InterviewSolutions