

InterviewSolution
Saved Bookmarks
1. |
Convert [1,-1,2,3] into an identity matrix by suitable row transformations. |
Answer» Let A = [1,-1,2,3] = \( \begin{bmatrix}1 & -1 \\[0.3em]2 &3 \\[0.3em]\end{bmatrix}\) By R2 – 2R1, we get, A ~ \( \begin{bmatrix}1 & -1 \\[0.3em]0 &5 \\[0.3em]\end{bmatrix}\) By (\(\frac{1}{5}\)) R2, we get, A ~ \( \begin{bmatrix}1 & -1 \\[0.3em]0 &1 \\[0.3em]\end{bmatrix}\) By R1 + R2, we get, A ~ \( \begin{bmatrix}1 & 0 \\[0.3em]0 &1 \\[0.3em]\end{bmatrix}\) This is an identity matrix. |
|