InterviewSolution
Saved Bookmarks
| 1. |
Convert of the complex number in the polar form:`1" "" "i` |
|
Answer» The given complex number is z = -1 -i. Let its polar form be `z = r(cos theta + i sin theta)`. Now, `r=|z|=sqrt((-1)^(2)+(-1)^(2))=sqrt(2)`. Let `alpha` be the acute angle, given by `tan alpha=|(Im(z))/(Re(z))|=|(-1)/(-1)|=1 rArr alpha=(pi)/(4)`. Clearly, the point representing the complex number z = -1 -i is P(-1, -1), which lies in the third quadrant. `therefore" "arg(z) = theta = -(pi-alpha) = -(pi-(pi)/(4))=(-3pi)/(4)`. Thus, `r = |z| = sqrt(2) and theta = (-3pi)/(4)`. Hence, the required polar form of z = (-1 -i) is given by `z=sqrt)2){cos((-3pi)/(4))+i sin((-3pi)/(4))}, i.e., sqrt(2)("cos"(3pi)/(4)+"i sin"(3pi)/(4))` |
|