1.

`Z_1 and Z_2` are two complex numbers represented by the plans A and B in the argand Plane `Z_! And Z_2` are the roots of `Z^2+pZ+q = 0`. `/_AOB = alpha` `alpha!= 0` and O is origin and OA = OB, then `p^2/q` is equal to

Answer» `Z_1=r*e^(itheta)`
`Z_2=r*e^(1(theta+alpha))`
`Z^2+PZ+q=0`
`Z_1+Z_2=-P`
`Z_1Z_2=q`
`p^2/q=((Z_1+Z_2)^2/(z_1Z_2))`
`(r^2*e^(120)(1+2e^(1alpha)+e^(12alpha)))/(r^2*e^(itheta)*e^(i(theta+alpha)`
`=(1+2e^(1alpha)+e^(12alpha))/(e^(ialpha)`
`=e^(-ialpha)+2+e^(ialpha)`.


Discussion

No Comment Found