InterviewSolution
Saved Bookmarks
| 1. |
Solve the system of equations `R e(z^2)=0, |z|=2` |
|
Answer» Given that, Re `(z^(2)) = 0, |z| = 2` Let `z = x + iy` `|z|=sqrt(x^(2) + y^(2))` `:. sqrt(x^(2) + y^(2)) = 2` `rArr x^(2) + y^(2) = 4 " " …(i)` and Re `(z) = x` Also, `z = x + iy` `rArr, z^(2) = x^(2) + 2ixy - y^(2)` `rArr z^(2) = (x^(2) - y^(2)) + 2ixy` `rArr Re(z^(2) = x^(2) - Y^(2)" " [:. Re (z^(2)) = 0 ]` `rArr x^(2) - Y^(2) = 0 " " ...(ii)` From Eqs. (i) and (ii), `x^(2) + x^(2) = 4` `rArr 2x^(2) = 4 rArr x^(2) = 2 ` `rArr x= pm sqrt (2)` `:. " " y =pmsqrt(2)` `z = x + iy` `rArr z = sqrt(2)pmisqrt(2),- sqrt(2)pm isqrt(2)` |
|