InterviewSolution
Saved Bookmarks
| 1. |
Convert the complex number `(-16)/(1+isqrt(3))`into polar form. |
|
Answer» `z = (-16)/(1+isqrt3) = (-16)/(1+isqrt3)**(1-isqrt3)/(1-isqrt3)` `=(-16+16sqrt3i)/(1+3) = -4+4sqrt3i` `:.-4+4sqrt3i = r(costheta+isintheta) ` `rcostheta = -4 and rsintheta = 4sqrt3` `r^2(cos^2theta+sin^2theta) =16+48` `r^2 = 64=> r = 8` `:.costheta = -4/8 = -1/2 and sintheta = 4sqrt3/8 = sqrt3/2` So, `theta = (2pi)/3` so, polar form will be, `z = 8(cos((2pi)/3)+isin((2pi)/3))` |
|