

InterviewSolution
1. |
(D^2+4)y=sin^2+x^4 |
Answer» We have: (D2 + 4)y = sin2x + x4 C.F:- m2 + 4 = 0 m = \(\pm\)2i y = c1 cos2x + c2 sin2x P.I. y = \(\frac{1}{D^2+4}\)(sin2x + x4) = \(\frac{1}{D^2+4}\)(sin2x) + \(\frac{1}{D^2+4}\)x4 = \(\frac{-\mathrm{x}}{2\times2}\)cos2x + \(\frac{1}{4\big(1+\frac{D^2}{4}\big)}\) x4 = \(\frac{-\mathrm{x}}{4}\) cos2x + \(\frac{1}{4}\)\(\big(1-\frac{D^2}{4}+\frac{D^4}{16}-\frac{D^8}{64}+...\big)\)x4 = \(\frac{-\mathrm{x}}{4}\) cos2x + \(\frac{\mathrm{x}^4}{4}\) - \(\frac{D^2\mathrm{x}^4}{4}\) + \(\frac{D^4\mathrm{x}^4}{16}\) - 0 + 0 + ...... = \(\frac{-\mathrm{x}}{4}\) cos2x + \(\frac{\mathrm{x}^4}{4}\) - \(\frac{12\mathrm{x}^2}{4}\) + \(\frac{24}{16}\) complete solution: y = C.F + P.I = (c1\(\frac{-\mathrm{x}}{4}\))cos 2x + C2 sin2x + \(\frac{\mathrm{x}^4}{4}\) - 3x2 + \(\frac{3}{2}\) |
|