| 1. |
D) If X+Y=12 and XY 14.Find the value of X2+Y?. |
|
Answer» Step-by-step explanation: Given,x+y=12 and xy=14 x+y=12 Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we GET, Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144 Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144 Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144=>x Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144=>x 2 Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144=>x 2 +y Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144=>x 2 +y 2 Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144=>x 2 +y 2 =144−28 Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144=>x 2 +y 2 =144−28=>x Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144=>x 2 +y 2 =144−28=>x 2 Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144=>x 2 +y 2 =144−28=>x 2 +y Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144=>x 2 +y 2 =144−28=>x 2 +y 2 Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144=>x 2 +y 2 =144−28=>x 2 +y 2 =116 |
|