1.

Decide whether following sequence is an A.P., if so find the 20th term of the progression.-12, -5, 2, 9,16, 23,30,…

Answer»

i. The given sequence is -12, -5,2, 9, 16, 23,30,… 

Here, t1 = -1, t2 = -5, t3 = 2, t4 = 9 

∴ t2 – t1 – 5 – (-12) – 5 + 12 = 7 

t3 – t2 = 2 – (-5) = 2 + 5 = 7 

∴ t4 – t3 – 9 – 2 = 7 

∴ t2 – t1 = t3 – t2 = … = 7 = d = constant 

The difference between two consecutive terms is constant. 

∴ The given sequence is an A.P.

ii. tn = a + (n – 1)d 

∴ t20 = -12 + (20 – 1)7 …[∵a = -12, d = 7] 

= -12 + 19 × 7 

= -12 + 133 

∴ t20 = 121 

∴ 20th term of the given A.P. is 121.



Discussion

No Comment Found