1.

Demonstarate that electronsmove in a betatronalong around orbitof constantradiusprovidedthe magnetic induction on the orbitof constantradiusprovidedthe magnetic inductionon the orbitis equalto halfthe meanvalue of that indide the orbit (the betatron condition).

Answer»

Solution :On the one hand,
`(dp)/(dt) = eE = (e)/(2pi r) (d Phi)/(dt) = (e)/(2pi r) (d)/(dt) int_(0)^(r) 2pi r' B (r') dr'`
On the other,
`p = B (r) er, r` = constant.
so, `(dp)/(dt) = er (d)/(dt) B(r) = er dotB (r)`
Hence, `er dotB (r) = (e)/(2 pi r) pi r^(2) (d)/(dt) LT B gt`
So, `dotB (r) = (1)/(2) (d)/(dt) lt B gt`
This is most EASILY SATISFIED by taking`B(r_(0)) = (1)/(2) lt B gt` .


Discussion

No Comment Found

Related InterviewSolutions