1.

Demostrate that is the case of a steady flow of an ideal fluid turns into Bernoulli equation.

Answer»

Solution :The Euler's equation is `rho(dvecv)/(dt)=vecf-vecnablap=-vecnabla(p+rhogz)`, where z is vertically upwards.
Now `(dvecv)/(dt)=(delvecv)/(delt)+(vecv*vecnabla)vecv`.
But `(vecv*vecnabla)vecv=vecnabla(1/2v^2)-vecvxxCurlvecv` (2)
we consider the steady (i.e. `delvecv//delt=0`) flow of an incompressible fluid then `rho`= CONSTANT. and as the MOTION is irrotational CURL `vecv=0`
So from (1) and (2) `rhovecnabla(1/2v^2)=-vecnabla(p+rhogz)`
or, `vecnabla(p+1/2rhov^2+rhogz)=0`
Hence `p+1/2rhov^2+rhogz=const ant`.


Discussion

No Comment Found

Related InterviewSolutions