1.

Derive a relation between t_(1//2) and temperature for an n^(th) order reaction where n gt 2?

Answer»

Solution :`lnk=lnA-(E_(a))/(RT)` (ARRHENIUS equation) ………………….`(i)`
`t_(1//2)=((2^(n-1)-1))/(K(n-1)a_(0)^(n-1))`……………….`(II)`
`ln(t_(1//2))=ln.(2^(n-1)-1)/((n-1)a_(0)^(n-1))-lnk` ……………….`(iii)`
From the Eqs. `(i)` and `(iii)`
`ln(t_(1//2))=ln.(2^(n-1)-1)/((n-1)a_(0)^(n-1))-lnA+(E_(a))/(RT)`
`impliesln(t_(1//2))=lnA.+(E_(a))/(RT)`
where `A.=(2^(n-1)-1)/((n-1)a_(0)^(n-1)xxA)`
That is `t_(1//2)` decreases with increases in temperture.
A PLOT of `t_(1//2)` vs `(1)/(T)` GIVES a straight line with slope `E_(a)`.


Discussion

No Comment Found