Saved Bookmarks
| 1. |
Derive an integrated rate for first order reaction. |
|
Answer» Solution :CONSIDER Ist order reaction `R rarr P` `"Rate "=(-d[R])/(DT)=k[R]^(1)` `(d[R])/([R])=-k.dt` `int(d[R])/([R])=-k int dt` `ln [R]=-KT+I` I is integral CONSTANT when `t=0[R]=[R]_(0)` `ln[R]_(0)=-k(0)+I` `THEREFORE I =ln[R]_(0)` `ln[R]=-kt+ln[R]_(0)` `kt=ln[R]_(0)-ln[R]` `KT=(2.303)/(t)log""([R]_(0))/([R])` |
|