1.

Derive an integrated rate for first order reaction.

Answer»

Solution :CONSIDER Ist order reaction `R rarr P`
`"Rate "=(-d[R])/(DT)=k[R]^(1)`
`(d[R])/([R])=-k.dt`
`int(d[R])/([R])=-k int dt`
`ln [R]=-KT+I`
I is integral CONSTANT
when `t=0[R]=[R]_(0)`
`ln[R]_(0)=-k(0)+I`
`THEREFORE I =ln[R]_(0)`
`ln[R]=-kt+ln[R]_(0)`
`kt=ln[R]_(0)-ln[R]`
`KT=(2.303)/(t)log""([R]_(0))/([R])`


Discussion

No Comment Found