1.

Derive Eq. (6.4c), making use of theBoltzmann distribution. From Eq.(6.4c) obtain the expression for molar vibration heat capacity C_("V vib") of diatomic gas. Calculate C_("V vib") for cl_(2) gas at the temperature 300K. The natural vibration frequency of these molecules is equal to 1,064.10^(14)s^(-1).

Answer»

Solution :by DEFINATION
`lt E gt =(Sigma ^(E_(V)e^(-E_(v)//kT)))/(Sigma exp(-E_(v)//kT))= ((del)/(delbeta)Sigma_(v=0)^(OO)e^(betaE_(v)))/(Sigma_(v=0)^(oo)e^(-betaE_(v)))`
`=-(del)/(del beta) In Sigma_(v=0)^(oo)e^(-beta(v+1//2)ħomega), beta=(1)/(KT)`
`=-(del)/(delbeta) In e^(-1//2beta ħ omega)(1)/(1-e^(-beta ħomega))`
`= (del)/(del beta)[-(1)/(2) ħomegabeta-In(1-e^(-beta ħ onrga))]`
`(1)/(2) ħ omega+( ħ omega)/(e^( ħ oega//kT)-1)`
Thus for one GM mole of diatomic gas
`C_("vvib")=N(dellt E gt)/(delT)=(R((ħ omega)/(KT))^(2)e^(ħ omega//kT))/((e^(ħ omega//kT)-1)^(2))`
where `R=Nk` is the gas constant.
In the present case `(ħomega)/(KT)= 2.7088`
and `C_("V 1 VIB")= 0.56R`


Discussion

No Comment Found

Related InterviewSolutions