1.

derive mathematical expression to find the weight of an object on moon in comparison with that on earth​

Answer»

\red{❣︎}\huge{\mathtt{\blue{\underline{\underline{ANSWER}}}}} \red{❣︎}

We Know That ,

\implies g = \frac{GM}{R²}

also , W = mg

\implies W = \frac{GMm}{R²}

Let , MASS of the object be m

Its WEIGHT on moon be W_m

\bf{Let \:the\: mass \:of \:Moon } = M_m

\bf{And\: the \:Radius \:of \:moon}= R_m

Applying UNIVERSAL Law of Gravitation , weight of the obj. in moon will be \longrightarrow

\implies {W_m} = G \frac{M_m\:×\:m}{R_m²} {\longrightarrow} ( <klux>1</klux> )

Let the weight of the same obj. on earth be W_e

\bf{Mass \:of \:earth \:is \:M}

\bf{Radius \:of \:earth\: is \:R}

\implies {W_e} = G \frac{M\:×\:m}{R²} {\longrightarrow} ( 2 )

\therefore ( 1 ) , ( 2 )

\implies W_m = G \frac{7.36\:×\:10²²\:kg\:×\:m}{( 1.76\:×\:10⁶\:m)²}

\implies W_m = \bf{2.431 × 10¹⁰\: G × m} \longrightarrow ( 3 )

and

\implies W_e = \bf{1.474 × 10¹¹\:G × m} \longrightarrow ( 4 )

now , \huge{\frac{3}{4}}

\implies\bold{\frac{W_m}{W_e}} = \bold{\frac{2.431\:×\:10¹⁰}{1.474\:×\:10¹¹}} = 0.165 = \bold{\frac{1}{6}}

\implies\bold{\frac{Weight\:of\:obj\:in\:moon}{weight\:of\:obj\:in\:earth}} = \bold{\frac{1}{6}}

\therefore \sf{Weight\: of\:obj.\:in\:moon} = \frac{1}{6} × \sf{its\: weight\: on\: earth}

\boxed{\boxed{\boxed{\bf{PROVED}}}} \blacksquare{\tiny{BY}}\blacksquare \boxed{\boxed{\boxed{\mathbb{@\:LILY}}}}



Discussion

No Comment Found