Saved Bookmarks
| 1. |
Derive referaction formula (for objectin air and image in the denser medium ) for refraction of light at a spherical surface |
Answer» Solution : From the FIGURE, `tan angleNOM=(MN)/(OM)` `tan angle NCM=(MN)/(MC)` where, `angle NOM and angle NCM` are interior angles similarly, `angleNCM=r+angleNIM` i.e., `r=angleNCM-angleNIM` For small angles`tan angleNCM=angleNCM` in rad similarly `i=(MN)/(OM)+(MN)/(MC)"" ` .....(1) and `r=(MN)/(MC)-(MN)/(MI)""` .......(2) From snell.s law, `n_(1)SIN i = n_(2) sin r` for small anglesin i = i(rad) and sin r = r (rad) i.e., `n_(1)i = n_(2)r ""`.......(3) using (1) and (2) in (3) we write, `n_(1)((MN)/(OM)+(MN)/(MC))=n_(2)((MN)/(MC)-(MN)/(MI))` or `(n_(1))/(OM)+(n_(1))/(MC)=(n_(2))/(MC)-(n_(2))/(MI)` i.e.,`(n_(1))/(OM) +(n_(2))/(MI)=(1)/(MC)(n_(2)-n_(1))` where, OM = -u, MI = +v, MC = +R by using SIGN conventions. `(n_(1))/(-u)+(n_(2))/(v)=(1)/(R)(n_(2)-n_(1))` `therefore (n_(2))/(v)-(n_(1))/(u)=(1)/(R) (n_(2)-n_(1))` |
|