1.

Derive the expression for a due Broglie wavelength lambda of a relativistic particle moving with kinetic energy T. At what value of T does the error in deremining lambda using the non-relativistic forumula not exceed 1% for an electron and a proton?

Answer»

Solution :For a relative particle
`T=mc^(2)= ` total energy `=sqrt(c^(2)p^(2)+m^(2)c^(4))`
squaring `sqrt(T(T+2MC^(2)))=CP`
Hence `lambda=(2pi ħc)/(sqrt(T(T+2mc^(2))))`
`=(2pi ħ)/(sqrt(2mT(1+(T)/(2mc^(2)))))`
If we use non relativistic FORMULA,
`lambda_(NR)=(2pi ħ)/(sqrt(2mT))`
`(Delta lambda)/(lambda)=(lambda_(NR)-lambda)/(lambda_(NR))~=(T)/(4MC^(2))`
(If `T//2mc^(2)lt lt1`, we can write`(1+(T)/(2mc^(2)))^(1//2)~= 1-(T)/(4mc^(2)))`
Thus `T le (4mc^(2)Delta lambda)/(lambda)` if the ERROR is less than `Delta lambda` For electron the error is not more than `1%` if ` T le 4xx0.511xx0.1MeV`
For a proton, the error is not more than `1%` if
`T le 4xx938xx0.01MeV`
i.e., `T le 37.5MeV`.


Discussion

No Comment Found

Related InterviewSolutions