1.

Derive the expression for the fringewidth ofinterferencepatternin Young'sdouble-slitexperiment .

Answer»

<P>

Solution :Let A and B be twoslitsseparatedby a distance.d.. Let .`lambda`. be the wavelengthof light .Let .D.be the distance betweenthe screenand the double slit.
Let .C. be a pointon BP such that `AP~~CP`.Path differencebetweenthe two wavesreaching.P. is GIVEN by BP-AP=BC=d
From the D BFP , `BP^2 =BF^2 +FP^2`and from the `D AEP , AP^2 = AE^2 +EP^2`
`BP^2 - AP^2=(D^2 + FP^2) -(D^2 - EP^2) `
i.e., `BP^2 -AP^2 =FP^2 -EP^2 `
`=(x+d/2)^2 - (x-d/2)^2 `
(BP-AP)(BP+AP)=`2(2x.d/2)`
For a point .P. close to .O.,
BP > > AP=D
(BP-AP)(2D)=2x.d
But (BP-AP)=BC=d
i.e.,`d=(xd)/D`
or `x=(DELTAD)/d`
For a constructiveinterference`d=nlambda`
Distanceof `n^(th)`brightfringefrom the centralbrightfringe`x_n=n(lambdaD)/d`
Distanceof `(n+1)^(th)`brightfringe from thecentralbrightfringe`x_(n+1)=(n+1)(lambdaD)/d`
By definition,Fringewidthis the distancebetweentwo consecutivebrightor dark fringes .
`x_(n+1)-x_(n)=b=lambda/d(n+1-n)`
i.e,`beta=(lambdaD)/d`
Fringewidth `beta prop D, beta prop lambda` and `beta prop 1/d`.
We can show that the fringewidthbetweenany twodarkfringes is ALSO`beta=(lambdaD)/d` .


Discussion

No Comment Found

Related InterviewSolutions