1.

Determine the AP whose third term is 16 and the 7th term exceeds the 5th term by 12.​

Answer»

\bf{\underline{Solution}}:-

Let first TERM of AP be a

and COMMON difference be d

Then,

\rm\:a_3=<klux>16</klux>

a + 2d = 16

a = 16 - 2d ..............................(i)

According to the question,

\rm\:a_7=a+4d+12

a + 6d = a + 4d + 12

6d = 4d + 12

6d - 4d = 12

2d = 12

d = \rm\cancel\dfrac{12}{2}

d = 6

putting the VALUE of d in eq(i)

a = 16 - 2d

a = 16 - 2 × 6

a = 16 - 12

a = 4

Now,

\rm\:a_1=4

\rm\:a_2=a+d

\rm\longrightarrow\:a_2=4+6

\rm\longrightarrow\:a_2=10

\rm\:a_3=a+2d

\rm\longrightarrow\:a_3=4+2\times{6}

\rm\longrightarrow\:a_3=4+12

\rm\longrightarrow\:a_3=16

\rm\:a_4=a+3d

\rm\longrightarrow\:a_4=4+3\times{6}

\rm\longrightarrow\:a_4=4+18

\rm\longrightarrow\:a_4=22

Hence,AP will be 4,10,16,22,......



Discussion

No Comment Found

Related InterviewSolutions