| 1. |
Divide 6x^5 +4x^4-3x^3-1 by 3x^2-x+1 |
|
Answer» Answer: 1551 Step-by-step explanation: 6x5+4x4-3x3-11-x+3x2 Final result : 6x5 + 4x4 - 3x3 + 3x2 - x - 11 Reformatting the input : Changes MADE to your input should not affect the solution: (1): "x2" was replaced by "x^2". 3 more similar replacement(s). Step by step solution : Step 1 : EQUATION at the end of step 1 : (((((6•(x5))+(4•(x4)))-(3•(x3)))-11)-x)+3x2 Step 2 : Equation at the end of step 2 : (((((6•(x5))+(4•(x4)))-3x3)-11)-x)+3x2 Step 3 : Equation at the end of step 3 : (((((6•(x5))+22x4)-3x3)-11)-x)+3x2 Step 4 : Equation at the end of step 4 : (((((2•3x5) + 22x4) - 3x3) - 11) - x) + 3x2 Step 5 : Trying to factor by pulling out : 5.1 Factoring: 6x5+4x4-3x3+3x2-x-11 Thoughtfully split the expression at hand into groups, each group having two TERMS : Group 1: -3x3+3x2 Group 2: 6x5+4x4 Group 3: -x-11 Pull out from each group separately : Group 1: (x-1) • (-3x2) Group 2: (3x+2) • (2x4) Group 3: (x+11) • (-1) Looking for common sub-expressions : Group 1: (x-1) • (-3x2) Group 3: (x+11) • (-1) Group 2: (3x+2) • (2x4 |
|