 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | दिया है - ` f( x ) = {{:( ( 1 - cos 4 x ) /(x ^(2))",",, "यदि " x lt 0), ( a",",, "यदि " x = 0 ), ( (sqrt x)/(sqrt ( 16 + sqrt x ) - 4 )",",,"यदि " x gt 0 ):}` a का मान ज्ञात कीजिये यदि ` x = ( pi ) /(2) ` पर यह सतत है | | 
| Answer» ` f ( x ) ` की परिभाषानुसार, ` f( 0 ) = a ` और ` f ( 0 + 0 ) = lim _ ( h to 0 ) f ( 0 + h ) ` ` = lim _ ( hto 0 ) { ( sqrth) /( sqrt ( 16 + sqrth ) - 4 ) } ` ` = lim _ ( hto 0 ) { ( sqrt h ) /( sqrt ( 16 + sqrth ) - 4 )} xx ( sqrt ( 16 + sqrth ) + 4 ) /( sqrt ( 16 + sqrt h ) + 4) ` ` = lim _ ( hto 0) ( sqrth ( sqrt ( 16 + sqrt h ) + 4 ) ) /( ( 16 + sqrt h ) - 16 ) ` ` = lim _ ( hto 0 ) ( sqrth * { sqrt (16 + sqrth) +4 })/( sqrth ) ` ` = lim _ ( hto 0 ) [ sqrt ( 16+sqrt h ) + 4] = 4 + 4 = 8 ` और ` f ( 0 - 0 ) = lim _ ( hto 0 ) f ( 0 - h ) ` ` = lim _ ( hto 0 ) ( [ 1 - cos 4 ( -h ) ] ) /( [ - h ]^(2)) = lim _ ( hto 0 ) ( [ 1 - cos ( - 4h ) ] ) /( h ^(2)) ` ` = lim _ ( hto 0) (( 1 - cos 4h ))/(h ^(2))= lim _ ( hto 0 ) ( 2 sin ^2 2h ) /( h ^(2)) ` ` = 2 xx 4 *lim _ ( hto 0 ) ( sin ^2 2h ) /( ( 2h )^(2)) = 8 lim _ ( hto 0) (( sin 2h )/(2h))^(2) ` ` = 8 xx1 ^(2) = 8 ` ` f( 0 + 0 ) = f ( 0 - 0 ) ` ` rArr lim _ ( x to 0 ) f ( x) = 8 ` परन्तु, बिंदु ` x = 0 ` पर ` f ( x ) ` की सततता के अनुसार, ` lim _ ( x to 0 ) f ( x) = f ( 0 ) rArr a = 8 ` अतः ` a = 8 ` | |