1.

Draw a line DE =6.5cm, construct the perpendicular bisector od DE. Mark the intersection point as O. With O as center and radius 2.8 cm cut the perpendicular bisector ay B and N. Join BE, EN, ND and DB to get required rhombus.

Answer»

gathered}:\implies\sf \Bigg\{\dfrac{3X + 6}{4x + 6}\Bigg\} = \Bigg\{\dfrac{4}{5}\Bigg\} \\\\\\:\implies\sf 5\Big\{3x + 6\Big\} = 4\Big\{4x + 6\Big\} \\\\\\:\implies\sf 15X + 30 = 16x + 24\\\\\\:\implies\sf 15x - 16x = 24 - 30\\\\\\:\implies\sf \cancel{-}\;x =\cancel{ -}\;6\\\\\\:\implies\underline{\pink{\boxed{\PMB{\FRAK{x = 6}}}}}\;\bigstar\end{gathered} :⟹{ 4x+63x+6 }={ 54 }:⟹5{3x+6}=4{4x+6}:⟹15x+30=16x+24:⟹15x−16x=24−30:⟹ − x= − 6:⟹ x=6x=6 ★



Discussion

No Comment Found